An AP2/ERF transcription factor confers chilling tolerance in rice.
Liang XuLijia YangAipeng LiJiazhuo GuoHuanyu WangHaoyue QiMing LiPingfang YangShiyong SongPublished in: Science advances (2024)
Cold stress, a prominent adverse environmental factor, severely hinders rice growth and productivity. Unraveling the complex mechanisms governing chilling tolerance in rice is crucial for molecular breeding of cold-tolerant varieties. Here, we identify an APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor, OsERF52, as a positive modulator in response to low temperatures. OsERF52 directly regulates the expression of C-Repeat Binding Factor ( CBF ) genes in rice. In addition, Osmotic Stress/ABA-Activated Protein Kinase 9-mediated phosphorylation of OsERF52 at S261 enhances its stability and interaction with Ideal Plant Architecture 1 and OsbHLH002/OsICE1. This collaborative activation leads to the expression of OsCBFs , thereby initiating the chilling response in rice. Notably, plants with base-edited OsERF52 S261D -3HA exhibit enhanced chilling resistance without yield penalty. Our findings unveil the mechanism orchestrated by a regulatory framework involving a protein kinase and transcription factors from diverse families, offering potential genetic resources for developing chilling-tolerant rice varieties.