Login / Signup

Polarizable Molecular Block Model: Toward the Development of an Induced Dipole Force Field for DNA.

Setsuko NakagawaAkihiro KimuraYuko Okamoto
Published in: The journal of physical chemistry. B (2022)
For flexible and highly ionized macromolecules such as DNA, it is important to correctly evaluate the intramolecular polarization in an induced dipole force field. In a proposed polarizable molecular block (PMB) model, a large molecule is divided into several molecular blocks. The atomic charges of the blocks are optimized by using the respective electrostatic potentials (ESPs) on the molecular surface. By using the capped hydrogen removal operation, the total charge of the blocks is controlled exactly to have an integer charge. The atomic polarizabilities of the blocks are optimized by using the respective polarized one-electron potentials that are the differences between ESPs with and without an external test charge. Induced dipole-charge interactions between the blocks are all included, but those interactions within the blocks are strictly excluded. All dipole-dipole interactions are included, but the damping functions are applied to the close dipole-dipole pairs. Several types of damping (simple scaling, exponential, linear, and Gaussian) are evaluated. The validity of the PMB model was verified by using trinucleotide duplexes which have A-, B-, and Z-DNA forms. The reference energies of trinucleotide duplexes including counterions (GGT3Na-ACC3Na, GAC3Na-GTC3Na, and GCG3Na-CGC3Na) are calculated using ωB97XD/aug-cc-pVDZ. All damping types reproduced well the reference interaction energies, dipole moments, and ESPs. Among them, the simple scaling with strong attenuation to 1-2 atomic pairs showed the highest stability against the polarization catastrophe. This study shows that it is possible to develop a high-quality polarizable force field by treating the intramolecular polarization on a block-by-block basis.
Keyphrases
  • single molecule
  • high glucose
  • diabetic rats
  • circulating tumor
  • molecular dynamics simulations
  • solar cells
  • cell free
  • drug induced
  • endothelial cells
  • density functional theory
  • energy transfer