Login / Signup

Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture.

Yonghao CuiJianzhong HeKun-Lin YangKang Zhou
Published in: Journal of industrial microbiology & biotechnology (2020)
Production of esters from the acetone-butanol-ethanol (ABE) fermentation by Clostridium often focuses on butyl butyrate, leaving acetone as an undesired product. Addition of butyrate is also often needed because ABE fermentation does not produce enough butyrate. Here we addressed the problems using Clostridium beijerinckii BGS1 that preferred to produce isopropanol instead of acetone, and co-culturing it with Clostridium tyrobutyricum ATCC 25,755 that produced butyrate. Unlike acetone, isopropanol could be converted into ester using lipase and acids. C. tyrobutyricum ATCC 25,755 produced acids at pH 6, while C. beijerinckii BGS1 produced mainly solvents at the same pH. When the two strains were co-cultured, more butyrate was produced, leading to a higher titer of esters than the mono-culture of C. beijerinckii BGS1. As the first study reporting the production of isopropyl butyrate from the Clostridium fermentation, this study highlighted the potential use of lipase and co-culture strategy in ester production.
Keyphrases
  • mental health
  • saccharomyces cerevisiae
  • escherichia coli
  • lactic acid
  • endothelial cells
  • risk assessment
  • climate change