Glutathione transferase Omega 1 confers protection against azoxymethane-induced colorectal tumour formation.
Padmaja TummalaMelissa RookeJane E DahlstromShuhei TakahashiMarco G CasarottoNilisha FernandoMark M HughesLuke A J O'NeillPhilip G BoardPublished in: Carcinogenesis (2021)
Inflammatory bowel disease (IBD) is characterized by multiple alterations in cytokine expression and is a risk factor for colon cancer. The Omega class glutathione transferase GSTO1-1 regulates the release of the pro-inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18) by deglutathionylating NEK7 in the NLRP3 inflammasome. When treated with azoxymethane and dextran sodium sulphate (AOM/DSS) as a model of IBD, Gsto1-/- mice were highly sensitive to colitis and showed a significant increase in the size and number of colon tumours compared with wild-type (WT) mice. Gsto1-/- mice treated with AOM/DSS had significantly lower serum IL-1β and IL-18 levels as well as significantly decreased interferon (IFN)-γ, decreased pSTAT1 and increased pSTAT3 levels in the distal colon compared with similarly treated WT mice. Histologically, AOM/DSS treated Gsto1-/- mice showed increased active chronic inflammation with macrophage infiltration, epithelial dysplasia and invasive adenocarcinoma compared with AOM/DSS treated WT mice. Thus, this study shows that GSTO1-1 regulates IL-1β and IL-18 activation and protects against colorectal cancer formation in the AOM/DSS model of IBD. The data suggest that while GSTO1-1 is a new target for the regulation of the NLRP3 inflammasome-associated cytokines IL-1β and IL-18 by small molecule inhibitors, there is a possibility that anti-inflammatory drugs targeting these cytokines may potentiate colon cancer in some situations.