Login / Signup

Effects of drying temperature on umami taste and aroma profiles of mushrooms (Suillus granulatus).

Zhenshan HouYunyun WeiLibin SunRongrong XiaHeran XuYunting LiYao FengWenli FanGuang Xin
Published in: Journal of food science (2022)
Temperature is one of the most important factors for drying edible mushrooms. To evaluate the effects of different hot-air drying (HAD) temperatures on the umami taste and aroma profile of Suillus granulatus (S. granulatus) mushrooms, we measured umami substances and volatile compounds of S. granulatus dried at 40°C, 50°C, 60°C, 70°C, and 80°C. Results showed that when dried at 60°C, S. granulatus exhibited significantly higher (p < 0.05) equivalent umami concentration, taste activity values of glutamic acid (Glu) and 5'-guanosine monophosphate (5'-GMP), and electronic tongue umami sensory scores. The results identified a total of 71 volatile components of which geranylacetone, benzaldehyde, phenylethyl alcohol, and 3-methylbutanoic acid were the dominant compounds. Sensory evaluation and relative odor activity values (ROAVs) revealed that 16 volatile compounds were the key volatile organic compounds contributing mushroom-like and sweet odor to the overall aroma of S. granulatus; these included 1-octen-3-ol (ROAV: 15.11-62.06) and ethyl phenylacetate (ROAV: 13.62-79.11). The drying temperature changed the aroma profile of S. granulatus. Furthermore, the mushroom dried at 60°C had a more desirable mushroom-like and almond odor. It was, therefore, proposed that HAD at 60°C was optimal for retaining a pleasant flavor in S. granulatus. This study provides a theoretical basis for the optimal drying condition selection for the mushroom processing industry. PRACTICAL APPLICATION: Hot-air drying at 60°C can significantly retain the flavor of S. granulatus and is an optimal temperature for mushroom drying.
Keyphrases
  • gas chromatography
  • mass spectrometry
  • escherichia coli
  • high resolution
  • ionic liquid
  • candida albicans
  • liquid chromatography
  • tandem mass spectrometry