Selective Inhibition of the Interaction between SARS-CoV-2 Spike S1 and ACE2 by SPIDAR Peptide Induces Anti-Inflammatory Therapeutic Responses.
Ramesh K PaidiMalabendu JanaRama K MishraDebashis DuttaKalipada PahanPublished in: Journal of immunology (Baltimore, Md. : 1950) (2021)
Many patients with coronavirus disease 2019 in intensive care units suffer from cytokine storm. Although anti-inflammatory therapies are available to treat the problem, very often, these treatments cause immunosuppression. Because angiotensin-converting enzyme 2 (ACE2) on host cells serves as the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to delineate a SARS-CoV-2-specific anti-inflammatory molecule, we designed a hexapeptide corresponding to the spike S1-interacting domain of ACE2 receptor (SPIDAR) that inhibited the expression of proinflammatory molecules in human A549 lung cells induced by pseudotyped SARS-CoV-2, but not vesicular stomatitis virus. Accordingly, wild-type (wt), but not mutated (m), SPIDAR inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 and IL-1β in human lung cells. However, wtSPIDAR remained unable to reduce activation of NF-κB and expression of proinflammatory molecules in lungs cells induced by TNF-α, HIV-1 Tat, and viral dsRNA mimic polyinosinic-polycytidylic acid, indicating the specificity of the effect. The wtSPIDAR, but not mutated SPIDAR, also hindered the association between ACE2 and spike S1 of SARS-CoV-2 and inhibited the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus, into human ACE2-expressing human embryonic kidney 293 cells. Moreover, intranasal treatment with wtSPIDAR, but not mutated SPIDAR, inhibited lung activation of NF-κB, protected lungs, reduced fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1-to-ACE2 interaction by wtSPIDAR may be beneficial for coronavirus disease 2019.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- angiotensin converting enzyme
- induced apoptosis
- coronavirus disease
- angiotensin ii
- cell cycle arrest
- anti inflammatory
- signaling pathway
- wild type
- endothelial cells
- intensive care unit
- poor prognosis
- oxidative stress
- pi k akt
- heart failure
- endoplasmic reticulum stress
- long non coding rna
- human immunodeficiency virus
- type diabetes
- induced pluripotent stem cells
- lps induced
- south africa
- cell proliferation
- hiv infected
- drug delivery
- diabetic rats
- mechanical ventilation
- antiretroviral therapy
- acute respiratory distress syndrome
- drug induced
- replacement therapy