Genomic Analysis of the SUMO-Conjugating Enzyme and Genes under Abiotic Stress in Potato (Solanum tuberosum L.).
Shantwana GhimireXun TangNing ZhangWeigang LiuXuehong QiXue FuHuai-Jun SiPublished in: International journal of genomics (2020)
SUMO-conjugating enzymes (SCE) and SUMO (Small Ubiquitin-Like Modifiers) genes are important components of SUMOylation. SCE has a crucial role during the SUMOylation process which acts as a catalyst to transfer SUMO to the target protein. Comprehensive studies on SCE and SUMO have been performed in some plants, but studies on these genes remain limited in potato. This study is aimed at exploring the role of StSCE and StSUMO genes in abiotic stress conditions. Nine and seven putative StSCEs and StSUMO genes, respectively, were identified using different methods and databases available for potato. Chromosomal localization showed that SCE and StSUMO genes are unevenly distributed on 7 different chromosomes. Potato genome database was accessed for the expression profile of StSCE and StSUMO genes, and these genes were differentially expressed in different tissues and organs during different phases of plant growth. The expression patterns on different treatments were further evaluated using qRT-PCR for all the StSCE and StSUMO genes. The expression was upregulated in StSCE1/5/6 and 7 under salt and PEG treatment. StSUMO 1/2 and 4 were upregulated under salt stress whereas StSCE9 and StSUMO2 and 4 were observed downregulated under PEG treatment. The results of this study could be useful to explore the role of StSCE genes in potato improvement.