Login / Signup

Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase and antibodies to neuron-specific antigens.

Datis KharrazianAristo Vojdani
Published in: Journal of applied toxicology : JAT (2016)
Evidence continues to increase linking autoimmunity and other complex diseases to the chemicals commonly found in our environment. Bisphenol A (BPA) is a synthetic monomer used widely in many forms, from food containers to toys, medical products and many others. The potential for BPA to participate as a triggering agent for autoimmune diseases is likely due to its known immunological influences. The goal of this research was to determine if immune reactivity to BPA has any correlation with neurological antibodies. BPA binds to a target enzyme called protein disulfide isomerase (PDI). Myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) are neuronal antigens that are target sites for neuroinflammation and neuroautoimmunity. We determined the co-occurrence of anti-MBP and anti-MOG antibodies with antibodies made against BPA bound to human serum albumin in 100 healthy human subjects. Correlation between BPA to PDI, BPA to MOG, BPA to MBP, PDI to MBP and PDI to MOG were all highly statistically significant (P < 0.0001). The outcome of our study suggests that immune reactivity to BPA-human serum albumin and PDI has a high degree of statistical significance with substantial correlation with both MBP and MOG antibody levels. This suggests that BPA may be a trigger for the production of antibodies against PDI, MBP and MOG. Immune reactivity to BPA bound to human tissue proteins may be a contributing factor to neurological autoimmune disorders. Further research is needed to determine the exact relationship of these antibodies with neuroautoimmunities. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.
Keyphrases