MicroRNA analysis from acute to convalescence in Crimean Congo hemorrhagic fever.
Serdal ArslanBurcu BayyurtAynur EnginMehmet BakirPublished in: Journal of medical virology (2021)
Crimean Congo hemorrhagic fever (CCHF) is one of the most important viral infections and is caused by Crimean Congo hemorrhagic fever orthonairovirus (CCHFV). Severity of CCHF can vary from a mild and nonspecific illness to a severe disease with fatal outcomes. MicroRNAs (miRNAs) have an increasing impact on the different pathways of viral infections. Within the transition process from acute phase to convalescence with 18 CCHF patients, we investigated the impacts on miRNA via microarray for the first time. We also compared miRNA gene expression in 16 severe and 15 mild cases. We identified Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathways associated with significant miRNAs utilizing DIANA TOOLS mirPath v.3. In this study, miR-15b-5p and miR-29a-3p were significantly downregulated in statistical terms; miR-4741, miR-937-5p, miR-6068, miR-7110-5p, miR-6126, and miR-7107-5p were upregulated in acute cases in comparison with convalescent patients (p ≤ .05). In total, 28 miRNAs (8 downregulated, 20 upregulated) were differentially expressed in severe CCHF patients as compared with mild cases (p ≤ .05). Whereas miR-6732-3p, miR-4436b-5p, miR-483-3p, and miR-6807-5p had the highest downregulation, miR-532-5p, miR-142-5p, miR-29c-3p, and let-7f-5p had the highest upregulation in severe patients in comparison with mild cases. Consequently, we determined that CCHF-induced miRNAs are associated with antiviral and proinflammatory pathways in acute and severe cases. In comparison with convalescence, these miRNAs in acute period may be therapeutic targets.
Keyphrases
- end stage renal disease
- gene expression
- cell proliferation
- ejection fraction
- newly diagnosed
- chronic kidney disease
- drug induced
- early onset
- peritoneal dialysis
- prognostic factors
- sars cov
- adipose tissue
- patient reported outcomes
- dna methylation
- signaling pathway
- mass spectrometry
- respiratory failure
- hepatitis b virus
- genome wide
- metabolic syndrome
- intensive care unit
- patient reported
- poor prognosis
- glycemic control
- high speed
- extracorporeal membrane oxygenation