Extensive experimental analyses concerned with Adaptive Cruise Control (ACC) have clearly shown that such systems have failed to deliver the promise of safe and traffic-flow effective car-following. On the contrary, large reaction times and poor string stability performances characterize commercial ACCs. While a huge research line is investigating the introduction of communication among vehicles to overcome the mentioned limitation, market adoption of connectivity-enhanced vehicles is struggling. In this context, an alternative approach based on multiple vehicle anticipation using RADAR only has emerged. Multianticipation is definitely not a new concept within the transportation community. However, until now, it was mainly associated with human driving. In the present manuscript, we demonstrate instead how, at least, one vehicle manufacturer has implemented multianticipation on a commercial vehicle. Following an in-house carried out testing campaign, we give an experimental characterization of the functioning of such a system including the potential impact on the flow and safety using a state-of-the-art fuzzy-logic safety performance model. The first results demonstrate that the vehicle under test reacted to one additional vehicle in front of the leader vehicle. Moreover, the actual realization appears to mainly target safety applications whereas there is only a marginal benefit on the string stability characteristics of the system. While we recorded a marginal string stability improvement (about 10 %), the minimum TTC was twice as large when multianticipation occurred with respect to the cases when that was not activated. Relevant Fuzzy Surrogate Safety Metrics further supported the safety argument.