Network analysis of genes associated with esophageal squamous cell carcinoma progression.
Xu LiZhenkun XiaPublished in: Journal of investigative medicine : the official publication of the American Federation for Clinical Research (2022)
This study aims to identify possible genes associated with esophageal squamous cell carcinoma (ESCC) by bioinformatics tool and further explore the function of immunoglobulin heavy chain variable family 4 gene (IGHV4)-28 in the ESCC progression.The ESCC-related genes in Cancer Genome Atlas (TCGA) database were analyzed by bioinformatics tools, which finally identified IGHV4-28. The expression levels of IGHV4-28 in TE-4 and EC9706 cells were detected by quantitative reverse transcription-PCR (qRT-PCR). Then oe-IGHV4-28 or sh-IGHV4-28 was transfected into TE-4 and EC9706 cells to verify the effect on cell proliferation, migration, invasion, and apoptosis rate. In vivo, a nude mouse model of ESCC was developed, whereby the tumor volume and weight were calculated to evaluate the impact of IGHV4-8 on tumor growth.Bioinformatics analysis using TCGA database showed that IGHV4-28, IGLV6-57, and KPRP were all associated with ESCC progression. Kaplan-Meier (KM) analysis showed overexpression of IGHV4-28 is substantially associated with the survival rate of patients with ESCC. IGHV4-28 was highly expressed in TE-4 and EC9706 cell lines and overexpression of IGHV4-28 enhanced cell proliferation, invasion, and migration, as well as decreased apoptosis rate. Moreover, nude mice transplanted with IGHV4-28-silencing TE-4 cells showed restrained tumor weight and volume.In summary, IGHV4-28 was increasingly expressed in ESCC and may serve as a therapeutic target in the treatment of ESCC.
Keyphrases
- cell cycle arrest
- cell proliferation
- induced apoptosis
- endoplasmic reticulum stress
- cell death
- pi k akt
- mouse model
- oxidative stress
- body mass index
- emergency department
- physical activity
- cell cycle
- type diabetes
- squamous cell carcinoma
- poor prognosis
- weight loss
- signaling pathway
- adipose tissue
- mass spectrometry
- insulin resistance
- body weight
- electronic health record
- high fat diet induced
- genome wide analysis