Login / Signup

Harnessing the Potential of FAP-IL-12mut TMEkine™ for Targeted and Enhanced Anti-tumor Responses.

Dahea LeeDongsu KimDonggeon KimJisu KangKiram LeeHyunji LeeYujin YoonYoungin LeeNahmju KimByoung Chul ChoJihoon ChangByoung Chul Lee
Published in: Molecular cancer therapeutics (2024)
While cancer immunotherapy has yielded encouraging outcomes in hematological malignancies, it has faced challenges in achieving the same level of effectiveness in numerous solid tumors, primarily because of the presence of immune-suppressive tumor microenvironments (TMEs). The immunosuppressive qualities of the TME have generated considerable interest, making it a focal point for treatments aimed at enhancing immune responses and inhibiting tumor progression. Fibroblast activation protein (FAP), an attractive candidate for targeted immunotherapy, is prominently expressed in the TME of various solid tumors. Interleukin-12 (IL-12), recognized as a key mediator of immune responses, has been explored as a potential candidate for cancer treatment. Nevertheless, initial efforts to administer IL-12 systemically demonstrated limited efficacy and notable side effects, emphasizing the necessity for innovation. To address these concerns, our molecules incorporated specific IL-12 mutations, called IL-12mut, which reduced toxicity. This study explored the therapeutic potential of the FAP-IL-12mut TMEkine™-a novel immunotherapeutic agent selectively engineered to target FAP-expressing cells in preclinical cancer models. Our preclinical results, conducted across diverse murine cancer models, demonstrated that FAP-IL-12mut significantly inhibits tumor growth, enhances immune cell infiltration, and promotes a shift toward a cytotoxic immune activation profile. These findings suggest that FAP-IL-12mut could offer effective cancer treatment strategies.
Keyphrases