Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit.
Michel BerthierPublished in: Journal of mathematical neuroscience (2020)
Inspired by the pioneer work of H.L. Resnikoff, which is described in full detail in the first part of this two-part paper, we give a quantum description of the space [Formula: see text] of perceived colors. We show that [Formula: see text] is the effect space of a rebit, a real quantum qubit, whose state space is isometric to Klein's hyperbolic disk. This chromatic state space of perceived colors can be represented as a Bloch disk of real dimension 2 that coincides with Hering's disk given by the color opponency mechanism. Attributes of perceived colors, hue and saturation, are defined in terms of Von Neumann entropy.