Neurovirulence of avian influenza virus is dependent on the interaction of viral NP protein with host factor FMRP in the murine brain.
Xuxiao ZhangJuan PuYipeng SunBi YuhaiZhimin JiangGuanlong XuHongyu ZhangJing CaoKin-Chow ChangJinhua LiuHonglei SunPublished in: Journal of virology (2021)
Avian influenza viruses (AIVs) are zoonotic viruses that exhibit a range infectivity and severity in the human host. Severe human cases of AIVs infection are often accompanied by neurological symptoms, however, the factors involved in the infection of the central nervous system (CNS) are not well known. In this study, we discovered that avian-like sialic acid (SA)-α2, 3 Gal receptor is highly presented in mammalian (human and mouse) brains. In the generation of a mouse-adapted neurotropic H9N2 AIV (SD16-MA virus) in BALB/c mice, we identified key adaptive mutations in its hemagglutinin (HA) and polymerase basic protein 2 (PB2) genes that conferred viral replication ability in mice brain. The SD16-MA virus showed binding affinity for avian-like SA-α2, 3 Gal receptor, enhanced viral RNP polymerase activity, increased viral protein production and transport that culminated in elevated progeny virus production and severe pathogenicity. We further established that host Fragile X Mental Retardation Protein (FMRP), a highly expressed protein in the brain that physically associated with viral nucleocapsid protein (NP) to facilitate RNP assembly and export, was an essential host factor for the neuronal replication of neurotropic AIVs (H9N2, H5N1 and H10N7 viruses). Our study identified a mechanistic process for AIVs to acquire neurovirulence in mice.IMPORTANCE Infection of the CNS is a serious complication of human cases of AIVs infection. The viral and host factors associated with neurovirulence of AIVs infection are not well understood. We identified and functionally characterized specific changes in the viral HA and PB2 genes of a mouse-adapted neurotropic avian H9N2 virus responsible for enhanced virus replication in neuronal cells and pathogenicity in mice. Importantly, we showed that host FMRP was a crucial host factor that was necessary for neurotropic AIVs (H9N2, H5N1 and H10N7 viruses) to replicate in neuronal cells. Our findings have provided insights into the pathogenesis of neurovirulence of AIV infection.
Keyphrases
- sars cov
- endothelial cells
- binding protein
- protein protein
- disease virus
- cerebral ischemia
- amino acid
- induced apoptosis
- pluripotent stem cells
- high fat diet induced
- white matter
- genome wide
- cell cycle arrest
- cell death
- multiple sclerosis
- dna methylation
- resting state
- gene expression
- mental health
- heavy metals
- subarachnoid hemorrhage
- signaling pathway
- respiratory syndrome coronavirus
- cell proliferation
- coronavirus disease
- oxidative stress
- metabolic syndrome
- depressive symptoms
- biofilm formation
- brain injury
- insulin resistance
- cystic fibrosis
- drug induced
- sleep quality
- endoplasmic reticulum stress