Login / Signup

Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.

Sangwook JooKyeounghak KimOhhun KwonJinkyung OhHyung Jun KimLinjuan ZhangJing ZhouJian-Qiang WangHu Young JeongJeong Woo HanGuntae Kim
Published in: Angewandte Chemie (International ed. in English) (2021)
Dry reforming of methane (DRM) is a feasible solution to address the reduction of greenhouse gases stipulated by the Paris Climate Agreement, given that it adds value by converting trivial gases, CO2 and CH4 , simultaneously into useful syngas. However, the conventional Ni catalyst undergoes deactivation due to carbon coking and particle agglomeration. Here we demonstrate a highly efficient and durable DRM catalyst: exsolved Co-Ni-Fe ternary alloy nanoparticles on the layered perovskite PrBaMn1.7 Co0.1 Ni0.2 O5+δ produced by topotactic exsolution. This method readily allows the generation of a larger number of exsolved nanoparticles with enhanced catalytic activity above that of Ni monometallic and Co-Ni bimetallic particles. The enhancement is achieved by the upshift of the d-band center of Co-Ni-Fe relative to those of Co-Ni and Ni, meaning easier charge donation to the adsorbate. Furthermore, the exsolved catalyst shows exceptional stability, with continuous DRM operation for about 350 hours.
Keyphrases