Login / Signup

Functional reduction in pollination through herbivore-induced pollinator limitation and its potential in mutualist communities.

Paul GlaumAndré Kessler
Published in: Nature communications (2017)
Plant-pollinator interactions are complex because they are affected by both interactors' phenotypes and external variables. Herbivory is one external variable that can have divergent effects on the individual and the population levels depending on specific phenotypic plastic responses of a plant to herbivory. In the wild tomato, Solanum peruvianum, herbivory limits pollinator visits, which reduces individual plant fitness due to herbivore-induced chemical defenses and signaling on pollinators (herbivore-induced pollinator limitation). We showed these herbivory-induced decreases in pollination to individual plants best match a Type II functional-response curve. We then developed a general model that shows these individual fitness reductions from herbivore-induced changes in plant metabolism can indirectly benefit overall populations and community resilience. These results introduce mechanisms of persistence in antagonized mutualistic communities that were previously found prone to extinction in theoretical models. Results also imply that emergent ecological dynamics of individual fitness reductions may be more complex than previously thought.
Keyphrases
  • high glucose
  • diabetic rats
  • physical activity
  • body composition
  • drug induced
  • healthcare
  • climate change
  • oxidative stress
  • endothelial cells
  • social support
  • cell wall
  • human health