Login / Signup

Multifaceted Expression of Peptidergic Modulation in the Feeding System of Aplysia.

Elizabeth C CropperJian JingFerdinand S VilimMichael A BarryKlaudiusz R Weiss
Published in: ACS chemical neuroscience (2018)
Neuropeptides are present in species throughout the animal kingdom and generally exert actions that are distinct from those of small molecule transmitters. It has, therefore, been of interest to define the unique behavioral role of this class of substances. Progress in this regard has been made in experimentally advantageous invertebrate preparations. We focus on one such system, the feeding circuit in the mollusc Aplysia. We review research conducted over several decades that played an important role in establishing that peptide cotransmitters are released under behaviorally relevant conditions. We describe how this was accomplished. For example, we describe techniques developed to purify novel peptides, localize them to identified neurons, and detect endogenous peptide release. We also describe physiological experiments that demonstrated that peptides are bioactive under behaviorally relevant conditions. The feeding system is like others in that peptides exert effects that are both convergent and divergent. Work in the feeding system clearly illustrates how this creates potential for behavioral flexibility. Finally, we discuss experiments that determined physiological consequences of one of the hallmark features of peptidergic modulation, its persistence. Research in the feeding system demonstrated that this persistence can change network state and play an important role in determining network output.
Keyphrases
  • small molecule
  • poor prognosis
  • amino acid
  • spinal cord
  • climate change