Multiplex Evolution of Antibody Fragments Utilizing a Yeast Surface Display Platform.
Eun Joong OhRongming LiuLiya LiangEmily F FreedCarrie A EckertRyan T GillPublished in: ACS synthetic biology (2020)
Advances in high-throughput synthetic biology technologies based on the CRISPR/Cas9 system have enabled a comprehensive assessment of mutations conferring desired phenotypes, as well as a better understanding of genotype-phenotype correlations in protein engineering. Engineering antibodies to enhance properties such as binding affinity and stability plays an essential role in therapeutic applications. Here we report a method, multiplex navigation of antibody structure (MINAS), that combines a CRISPR/Cas9-based trackable editing method and fluorescent-activated cell sorting (FACS) of yeast-displayed libraries. We designed mutations in all of the complementarity-determining and framework regions of a well-characterized scFv antibody and mapped the contribution of these regions to enhanced properties. We identified specific mutants that showed higher binding affinities up to 100-fold compared to the wild-type. This study expands the applicability of CRISPR/Cas9-based trackable protein engineering by combining it with a surface display platform.