Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth.
Steven S WelcMichelle Wehling-HenricksMakoto Kuro-OKyle A ThomasJames G TidballPublished in: Experimental physiology (2019)
Skeletal muscle injuries activate a complex programme of myogenesis that can restore normal muscle structure. We tested whether modulating the expression of klotho influenced the response of mouse muscles to acute injury. Our findings show that klotho expression in muscle declines at 3 days post-injury. That reduction in klotho expression coincided with elevated expression of targets of Wnt signalling (Ccnd1; Myc) and increased MyoD+ muscle cell numbers, reflecting the onset of myogenic cell differentiation. klotho expression subsequently increased at 7 days post-injury with elevated expression occurring primarily in inflammatory lesions, which was accompanied by reduced expression of Wnt target genes (Ccnd1: 91%; Myc: 96%). Introduction of a klotho transgene maintained high levels of klotho expression over the course of muscle repair and attenuated the increases in Ccnd1 and Myc expression that occurred at 3 days post-injury. Correspondingly, transgene expression reduced Wnt signalling in Pax7+ cells, reflected by reductions in Pax7+ cells expressing active β-catenin, and reduced the numbers of MyoD+ cells at 3 days post-injury. At 21 days post-injury, muscles in klotho transgenic mice showed increased Pax7+ and decreased myogenin+ cell densities and large increases in myofibre size. Likewise, treating myogenic cells in vitro with Klotho reduced Myod expression but did not affect Pax7 expression. Muscle inflammation was only slightly modulated by increased klotho expression, initially reducing the expression of M2-biased macrophage markers Cd163 and Cd206 at 3 days post-injury and later increasing the expression of pan-macrophage marker F480 and Cd68 at 21 days post-injury. Collectively, our study shows that Klotho modulates myogenesis and that increased expression accelerates muscle growth after injury.