Mechanistic modelling of relative biological effectiveness of carbon ion beams and comparison with experiments.
Haonan FengWeiguang LiYibao ZhangCheng ChangLing HuaYiwen FengYoufang LaiLi-Sheng GengPublished in: Physics in medicine and biology (2024)
Objective. Relative biological effectiveness (RBE) plays a vital role in carbon ion radiotherapy, which is a promising treatment method for reducing toxic effects on normal tissues and improving treatment efficacy. It is important to have an effective and precise way of obtaining RBE values to support clinical decisions. A method of calculating RBE from a mechanistic perspective is reported. Approach. Ratio of dose to obtain the same number of double strand breaks (DSBs) between different radiation types was used to evaluate RBE. Package gMicroMC was used to simulate DSB yields. The DSB inductions were then analyzed to calculate RBE. The RBE values were compared with experimental results. Main results. Furusawa's experiment yielded RBE values of 1.27, 2.22, 3.00 and 3.37 for carbon ion beam with dose-averaged LET of 30.3 keV μ m -1 , 54.5 keV μ m -1 , 88 keV μ m -1 and 137 keV μ m -1 , respectively. RBE values computed from gMicroMC simulations were 1.75, 2.22, 2.87 and 2.97. When it came to a more sophisticated carbon ion beam with 6 cm spread-out Bragg peak, RBE values were 1.61, 1.63, 2.19 and 2.36 for proximal, middle, distal and distal end part, respectively. Values simulated by gMicroMC were 1.50, 1.87, 2.19 and 2.34. The simulated results were in reasonable agreement with the experimental data. Significance. As a mechanistic way for the evaluation of RBE for carbon ion radiotherapy by combining the macroscopic simulation of energy spectrum and microscopic simulation of DNA damages, this work provides a promising tool for RBE calculation supporting clinical applications such as treatment planning.