Login / Signup

Employing a ZTP Riboswitch to Detect Bacterial Folate Biosynthesis Inhibitors in a Small Molecule High-Throughput Screen.

Kevin R PerkinsRuben M AtilhoMichelle H MoonRonald R Breaker
Published in: ACS chemical biology (2019)
Various riboswitch classes are being discovered that precisely monitor the status of important biological processes, including metabolic pathway function, signaling for physiological adaptations, and responses to toxic agents. Biochemical components for some of these processes might make excellent targets for the development of novel antibacterial molecules, which can be broadly sought by using phenotypic drug discovery (PDD) methods. However, PDD data do not normally provide clues regarding the target for each hit compound. We have developed and validated a robust fluorescent reporter system based on a ZTP riboswitch that identifies numerous folate biosynthesis inhibitors with high sensitivity and precision. The utility of the riboswitch-based PDD strategy was evaluated using Escherichia coli bacteria by conducting a 128 310-compound high-throughput screen, which identified 78 sulfanilamide derivatives among the many initial hits. Similarly, representatives of other riboswitch classes could be employed to rapidly match antibacterial hits with the biological processes they target.
Keyphrases