Proteomic Analysis of Exosomes for Discovery of Protein Biomarkers for Prostate and Bladder Cancer.
Yi-Ting WangTujin ShiSudhir SrivastavaJacob KaganTao LiuKarin D RodlandPublished in: Cancers (2020)
Extracellular vesicles (EVs) are released by nearly all cell types as part of normal cell physiology, transporting biological cargo, including nucleic acids and proteins, across the cell membrane. In pathological states such as cancer, EV-derived cargo may mirror the altered state of the cell of origin. Exosomes are the smaller, 50-150 nanometer-sized EVs released from fusion of multivesicular endosomes with the plasma membrane. Exosomes play important roles in cell-cell communication and participate in multiple cancer processes, including invasion and metastasis. Therefore, proteomic analysis of exosomes is a promising approach to discover potential cancer biomarkers, even though it is still at an early stage. Herein, we critically review the advances in exosome isolation methods and their compatibility with mass spectrometry (MS)-based proteomic analysis, as well as studies of exosomes in pathogenesis and progression of prostate and bladder cancer, two common urologic cancers whose incidence rates continue to rise annually. As urological tumors, both urine and blood samples are feasible for noninvasive or minimally invasive analysis. A better understanding of the biological cargo and functions of exosomes via high-throughput proteomics will help provide new insights into complex alterations in cancer and provide potential therapeutic targets and personalized treatment for patients.
Keyphrases
- mesenchymal stem cells
- single cell
- mass spectrometry
- stem cells
- papillary thyroid
- cell therapy
- high throughput
- minimally invasive
- prostate cancer
- multiple sclerosis
- end stage renal disease
- chronic kidney disease
- squamous cell carcinoma
- ms ms
- radiation therapy
- risk assessment
- young adults
- lymph node
- lymph node metastasis
- risk factors
- rectal cancer
- prognostic factors
- climate change
- binding protein
- case control
- amino acid
- sentinel lymph node