Orientation of Human Microprocessor on Primary MicroRNAs.
Huong Minh NguyenTrung Duc NguyenThuy Linh NguyenTuan Anh NguyenPublished in: Biochemistry (2018)
Single-stranded microRNAs (miRNAs) regulate gene expression by triggering mRNA degradation and/or inhibiting mRNA translation. miRNAs play important roles in various critical cellular processes and are associated with numerous human diseases, including cancer and neurodegenerative diseases. miRNA sequences are embedded in the primary miRNA transcripts (pri-miRNAs) that are initially processed by the Microprocessor complex in the nucleus. Microprocessor can orient itself on pri-miRNAs in two ways: one orientation results in subsequent miRNA production, and the other leads to cleavage of the miRNA sequence. Therefore, orienting Microprocessor on pri-miRNAs is a fundamental mechanism for determining the accuracy and efficiency of pri-miRNA processing and, in turn, miRNA production. Multiple mechanisms controlling Microprocessor orientation on pri-miRNAs, involving both cis-acting RNA elements and trans-acting factors, have recently been revealed. In this review, we discuss these exciting mechanisms and consider potential unknown mechanisms that might regulate Microprocessor orientation on pri-miRNAs.