Login / Signup

Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation.

Zeng YiXinxing CuiGuangcan ChenXiangyu ChenXian JiangXudong Li
Published in: ACS biomaterials science & engineering (2021)
Excessive reactive oxygen species (ROS) can cause oxidative stress of tissues and adversely influence homeostasis of the body. Epigallocatechin gallate (EGCG) with an antioxidative effect can effectively eliminate the ROS, but an evident weakness associated with it is the relatively poor cytocompatibility. Combining with other biomacromolecules such as human hair keratin (KE) and using nanotechnology to prepare nanoparticles can improve this situation. By covalent bonding, we assembled KE and EGCG into KE-EGCG nanoparticles (NANO) with size of about 50 nm and characterized them by DLS, UV, FTIR, NMR, and XPS. Free radical scavenging experiments show that antioxidant properties of the obtained NANO are superior to that of vitamin C. Cell culture experiments also show that the NANO can effectively protect the proliferation of L929 cells and HUVEC cells. In addition, we also used RAW264.7 cells to establish a H2O2-induced cell injury model and an lipopolysaccharide-induced cellular inflammatory model to evaluate the antioxidant and anti-inflammatory properties of NANO. The results show that the NANO can effectively prevent cells from oxidative damage and reduce inflammatory expression of the cells, indicating that the NANO have a good antioxidative and anti-inflammatory effect on cells which can be applied to many diseases related to oxidative stress.
Keyphrases