Login / Signup

Temperature-Dependent Catalysis of Glycylglycine on Its Amadori Compound Degradation to Deoxyosone.

Heping CuiMengyu MaZiyan WangKhizar HayatXiaoming ZhangChi-Tang Ho
Published in: Journal of agricultural and food chemistry (2022)
The Amadori rearrangement product derived from xylose-glycylglycine (XGG-ARP) is reactive to be attacked by another glycylglycine to generate a xylose-glycylglycine cross-linking product (XGG-CP) as a secondary product of the ARP. In this research, the role of additional glycylglycine in the XGG-ARP degradation was studied, and the dependence of glycylglycine on temperature was further clarified. The yields of XGG-CP and its degradation products were significantly affected by the molar ratio of glycylglycine to XGG-ARP. At the similar total concentration of reactant XGG-ARP and glycylglycine, the yields of XGG-CP, 3-deoxyxylosone, and furfural were dramatically decreased as the molar ratio of glycylglycine to XGG-ARP was increased. However, when the reaction temperature was increased to 120 °C, the increased additional glycylglycine percentage showed an obvious catalytic effect on the XGG-ARP degradation to deoxyosone and thus improved the furfural yield as well. The results revealed that an increased glycylglycine dosage level enhanced both the conversion of XGG-ARP to XGG-CP and the conversion of XGG-CP to 3-deoxyosone. The high-temperature-induced unequal acceleration for XGG-CP formation and degradation at a high glycylglycine dosage further led to a catalytic effect on the ARP degradation to deoxyosone. The concentration of 3-deoxyosone was increased by 37.5% when the molar ratio of glycylglycine to XGG-ARP increased from 1:2 to 2:1 at a temperature of 120 °C.
Keyphrases
  • diabetic rats