Acute myeloid leukemia (AML) is the common blood cancer in hematopoietic system-related diseases and has a poor prognosis. Studies have shown that long non-coding RNAs (lncRNAs) are closely related to the pathogenesis of a variety of diseases, including AML. However, the specific molecular mechanism remains unclear. Hence, the objective of this study was to investigate the effect and mechanism of lncRNA X inactive specific transcript (lncRNA XIST) on AML. To achieve our objective, some tests were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of lncRNA XIST, miR-142-5p and the platelet isoform of phosphofructokinase (PFKP). The targeting relationship between miR-142-5p and lncRNA XIST and PFKP was verified by Pearson correlation analysis, dual-luciferase reporter assay, and pull-down assay. Functional experiments were used to analyze the effect and mechanism of action of knocking down lncRNA XIST on THP-1 and U937 cells. Compared with bone marrow cells, lncRNA XIST and PFKP expression levels were up-regulated and miR-142-5p expression levels were down-regulated in AML. Further analysis revealed that lncRNA XIST targeted and bound to miR-142-5p, and PFKP was a target gene of miR-142-5p. Knockdown of lncRNA XIST significantly promoted miR-142-5p expression to down-regulate PFKP in THP-1 and U937 cells, while the cell proliferation, cell viability, and cell cycle arrest were inhibited and apoptosis was increased. Knockdown of miR-142-5p reversed the functional impact of lncRNA XIST knockdown on AML cells. In conclusion, down-regulation of lncRNA XIST can affect the progression of AML by regulating miR-142-5p.
Keyphrases
- long non coding rna
- poor prognosis
- cell cycle arrest
- acute myeloid leukemia
- cell death
- induced apoptosis
- pi k akt
- bone marrow
- cell proliferation
- allogeneic hematopoietic stem cell transplantation
- endoplasmic reticulum stress
- oxidative stress
- signaling pathway
- crispr cas
- high resolution
- copy number
- acute lymphoblastic leukemia
- mesenchymal stem cells
- drug delivery
- dna methylation
- genome wide
- papillary thyroid
- childhood cancer