Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease.
Erkka ValoJoanne B ColeViji NairXin ShengHongbo LiuEmma AhlqvistNatalie R van ZuydamErika B ParenteDamian FerminLaura Jane SmythRany M SalemCarol M ForsblomErkka ValoJoanne B ColeEoin P BrennanGareth J McKayDarrell AndrewsRoss DoyleHelen C LookerRobert G NelsonColin Neil Alexander PalmerAmy Jayne McKnightCatherine GodsonAlexander Peter MaxwellLeif C GroopMark I McCarthyMatthias KretzlerKatalin SusztákJoel N HirschhornJose C FlorezPer-Henrik Groopnull nullPublished in: Diabetologia (2022)
The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).