LipidOA: A Machine-Learning and Prior-Knowledge-Based Tool for Structural Annotation of Glycerophospholipids.
Donghui ZhangQiaohong LinTian XiaJing ZhaoWenpeng ZhangZheng OuyangYu XiaPublished in: Analytical chemistry (2022)
The Paternò-Büchi (PB) reaction is a carbon-carbon double bond (C═C)-specific derivatization reaction that can be used to pinpoint the location(s) of C═C(s) in unsaturated lipids and quantitate the location of isomers when coupled with tandem mass spectrometry (MS/MS). As the data of PB-MS/MS are increasingly generated, the establishment of a corresponding data analysis tool is highly needed. Herein, LipidOA, a machine-learning and prior-knowledge-based data analysis tool, is developed to analyze PB-MS/MS data generated by liquid chromatography-mass spectrometry workflows. LipidOA consists of four key functional modules to realize an annotation of glycerophospholipid (GPL) structures at the fatty acyl-specific C═C location level. These include (1) data preprocessing, (2) picking C═C diagnostic ions, (3) de novo annotation, and (4) result ranking. Importantly, in the result-ranking module, the reliability of structural annotation is sorted via the use of a machine learning classifier and comparison to the total fatty acid database generated from the same sample. LipidOA is trained and validated by four PB-MS/MS data sets acquired using different PB reagents on mass spectrometers of different resolutions and of different biological samples. Overall, LipidOA provides high precision (higher than 0.9) and a wide coverage for structural annotations of GPLs. These results demonstrate that LipidOA can be used as a robust and flexible tool for annotating PB-MS/MS data collected under different experimental conditions using different lipidomic workflows.
Keyphrases
- ms ms
- data analysis
- liquid chromatography
- tandem mass spectrometry
- machine learning
- mass spectrometry
- high performance liquid chromatography
- heavy metals
- ultra high performance liquid chromatography
- big data
- liquid chromatography tandem mass spectrometry
- electronic health record
- fatty acid
- aqueous solution
- simultaneous determination
- gas chromatography
- healthcare
- artificial intelligence
- high resolution
- solid phase extraction
- risk assessment
- rna seq
- deep learning
- body composition
- water soluble
- single cell