Login / Signup

FoBSim: an extensible open-source simulation tool for integrated fog-blockchain systems.

Hamza BaniataAttila Kertesz
Published in: PeerJ. Computer science (2021)
A lot of hard work and years of research are still needed for developing successful Blockchain (BC) applications. Although it is not yet standardized, BC technology was proven as to be an enhancement factor for security, decentralization, and reliability, leading to be successfully implemented in cryptocurrency industries. Fog computing (FC) is one of the recently emerged paradigms that needs to be improved to serve Internet of Things (IoT) environments of the future. As hundreds of projects, ideas, and systems were proposed, one can find a great R&D potential for integrating BC and FC technologies. Examples of organizations contributing to the R&D of these two technologies, and their integration, include Linux, IBM, Google, Microsoft, and others. To validate an integrated Fog-Blockchain protocol or method implementation, before the deployment phase, a suitable and accurate simulation environment is needed. Such validation should save a great deal of costs and efforts on researchers and companies adopting this integration. Current available simulation environments facilitate Fog simulation, or BC simulation, but not both. In this paper, we introduce a Fog-Blockchain simulator, namely FoBSim, with the main goal to ease the experimentation and validation of integrated Fog-Blockchain approaches. According to our proposed workflow of simulation, we implement different Consensus Algorithms (CA), different deployment options of the BC in the FC architecture, and different functionalities of the BC in the simulation. Furthermore, technical details and algorithms on the simulated integration are provided. We validate FoBSim by describing the technologies used within FoBSim, highlighting FoBSim's novelty compared to the state-of-the-art, discussing the event validity in FoBSim, and providing a clear walk-through validation. Finally, we simulate case studies, then present and analyze the obtained results, where deploying the BC network in the fog layer shows enhanced efficiency in terms of total run time and total storage cost.
Keyphrases
  • virtual reality
  • machine learning
  • randomized controlled trial
  • public health
  • mass spectrometry
  • clinical practice
  • social media