Siblings with vitamin D-dependent rickets type 1A: Importance of genetic testing and a review of genotype-phenotype correlations.
Leonard Kuan-Pei WangManjushree ShanmugasundaramErin CooneyPhillip D K LeePublished in: American journal of medical genetics. Part A (2024)
Vitamin D-dependent rickets type 1A (VDDR1A) is a rare condition caused by biallelic pathogenic variants in CYP27B1, which encodes 25-hydroxyvitamin D3-1-α-hydroxylase. Inadequate activity of this enzyme results in deficient 1α-hydroxylation of inactive 25-hydroxyvitamin D to biologically active 1,25-dihydroxyvitamin D, with consequent adverse effects on calcium and phosphate metabolism. A female child was clinically diagnosed at 18 months old with hypophosphatemic rickets based on phenotype and biochemical testing, with neither parent affected. A subsequent affected male sibling led to the reconsideration of the diagnosis. Exome sequencing showed a homozygous CYP27B1 c.1040T>A (p.Ile347Asn) variant for both children. No variants were found in genes associated with hypophosphatemic rickets. A review of published cases of VDDR1A with homozygous CYP27B1 variants indicates variable clinical presentation, lack of genotype-phenotype correlation, and low serum phosphate at diagnosis in most cases. These findings emphasize the clinical importance of molecular testing as part of the diagnostic evaluation for cases of non-nutritional rickets.