Feasibility and Cardiometabolic Effects of Time-Restricted Eating in Patients with Metabolic Syndrome.
Iwona ŚwiątkiewiczJarosław NuszkiewiczJoanna WróblewskaMałgorzata NartowiczKamil SokołowskiPaweł SutkowyPaweł RajewskiKrzysztof BuczkowskiMałgorzata ChudzińskaEmily N C ManoogianPam R TaubAlina WoźniakPublished in: Nutrients (2024)
Metabolic syndrome (MetS) and a prolonged daily eating window (EW) are associated with circadian rhythm disruption and increased cardiometabolic risk. Misalignment between circadian timing system and daily rhythms of food intake adversely impacts metabolic regulatory mechanisms and cardiovascular function. Restricting the daily EW by imposing an eating-fasting cycle through time-restricted eating (TRE) can restore robust circadian rhythms, support cellular metabolism, and improve cardiometabolic health. The aim of this study was to assess a feasibility of 12-week TRE intervention with self-selected 10 h EW and effects of TRE on EW duration, cardiometabolic outcomes, daily rhythms of behavior, and wellbeing in Polish patients with MetS and EW ≥ 14 h/day. Dietary intake was monitored with a validated myCircadianClock application (mCC app). Adherence to TRE defined as the proportion of days recorded with mCC app in which participants satisfied 10-h TRE was the primary outcome. A total of 26 patients (aged 45 ± 13 years, 62% women, 3.3 ± 0.5 MetS criteria, EW 14 ± 1.5 h/day) were enrolled. Coexistence of increased waist circumference (WC) (96% of patients), elevated fasting plasma glucose (FPG) (77%), and elevated blood pressure (BP) (69%) was the most common MetS pattern (50%). TRE intervention (mean duration of 81.6 ± 12.6 days) led to reducing daily EW by 28% ( p < 0.0001). Adherence to TRE was 87 ± 13%. Adherence to logging food intake on mCC app during TRE was 70 ± 27%. Post TRE, a decrease in body weight (2%, 1.7 ± 3.6 kg, p = 0.026), body mass index (BMI) (1%, 0.5 ± 1.2 kg/m 2 , p = 0.027), WC (2%, 2.5 ± 3.9 cm, p = 0.003), systolic BP (4%, 4.8 ± 9.0 mmHg, p = 0.012), FPG (4%, 3.8 ± 6.9 mg/dL, p = 0.037), glycated hemoglobin (4%, 0.2 ± 0.4%, p = 0.011), mean fasting glucose level from continuous glucose monitor (CGM) (4%, 4.0 ± 6.1 mg/dL, p = 0.002), and sleepiness score (25%, 1.9 ± 3.2 points, p = 0043) were observed. A significant decrease in body weight (2%), BMI (2%), WC (3%), mean CGM fasting glucose (6%), sleepiness score (27%), and depression score (60%) was found in patients with mean post-TRE EW ≤ 10 h/day (58% of total), and not in patients with EW > 10 h/day. Adherence to TRE was higher in patients with post-TRE EW ≤ 10 h/day vs. patients with EW > 10 h/day (94 ± 6% vs. 77 ± 14%, p = 0.003). Our findings indicate that 10-h TRE was feasible in the European MetS population. TRE resulted in reducing daily EW and improved cardiometabolic outcomes and wellbeing in patients with MetS and prolonged EW. Use of the mCC app can aid in implementing TRE. This pilot clinical trial provides exploratory data that are a basis for a large-scale randomized controlled trial to determine the efficacy and sustainability of TRE for reducing cardiometabolic risks in MetS populations. Further research is needed to investigate the mechanisms of TRE effects, including its impact on circadian rhythm disruption.
Keyphrases
- body mass index
- physical activity
- randomized controlled trial
- body weight
- metabolic syndrome
- blood glucose
- blood pressure
- clinical trial
- insulin resistance
- heart failure
- end stage renal disease
- public health
- chronic kidney disease
- weight loss
- obstructive sleep apnea
- study protocol
- cardiovascular disease
- atrial fibrillation
- weight gain
- risk assessment
- mental health
- pregnant women
- health information
- prognostic factors
- depressive symptoms
- deep learning
- quality improvement
- uric acid
- skeletal muscle
- human health
- sleep quality
- electronic health record
- double blind
- genetic diversity