Login / Signup

Hepatocellular carcinoma stage: an almost loss of fatty acid metabolism and gain of glucose metabolic pathways dysregulation.

Karthik Balakrishnan
Published in: Medical oncology (Northwood, London, England) (2022)
Cancer cells rewire the metabolic processes beneficial for cancer cell proliferation, survival, and their progression. In this study, metabolic processes related to glucose, glutamine, and fatty acid metabolism signatures were collected from the molecular signatures database and investigated in the context of energy metabolic pathways through available genome-wide expression profiles of liver cancer cohorts by gene sets-based pathway activation scoring analysis. The outcomes of this study portray that the fatty acid metabolism, transport, and its storage related signatures are highly expressed across early stages of liver tumors and on the contrary, the gene sets related to glucose transport and glucose metabolism are prominently activated in the hepatocellular carcinoma (HCC) stage. Based on the results, these metabolic pathways are clearly dysregulated across specific stages of carcinogenesis. The identified dimorphic metabolic pathway dysregulation patterns are further reconfirmed by examining corresponding metabolic pathway genes expression patterns across various stages encompassing profiles. Recurrence is the primary concern in the carcinogenesis of liver tumors due to liver tissues regeneration. Hence, to further explore these dysregulation effects on recurrent cirrhosis and recurrent HCC sample containing profile GSE20140 was examined and interestingly, this result also reiterated these differential metabolic pathways dysregulation. In addition, a recently established metabolome profile for the massive panel of cancer cell-lines, including liver cancer cell-lines, was used for further exploration. These findings also reassured those differential metabolites abundance of the fatty acid and glucose metabolic pathways enlighten those dimorphic metabolic pathways dysregulation. Moreover, ROC curves of fatty acid metabolic pathway genes such as acetyl-CoA carboxylase (ACACB), acyl-CoA dehydrogenase long chain (ACADL), and acyl-CoA dehydrogenase medium chain (ACADM) as well as glucose metabolic pathway genes such as phosphoglycerate kinase (PGK1), pyruvate dehydrogenase (PDHA1), pyruvate dehydrogenase kinase (PDK1) demonstrated greater sensitivity and specificity in the corresponding stage-specific tumors with significant p-values (p < 0.05). Furthermore, overall survival (OS) and recurrence-free survival (RFS) studies also reconfirmed that the rate-limiting genes expression of fatty acid and glucose metabolic pathways reveal better and poor survival in HCC patient cohorts, respectively. In conclusion, all these results clearly show that metabolic rewiring and the existence of two diverse metabolic pathways dysregulation involving fatty acid and glucose metabolism across the stages of liver tumors have been identified. These findings might be useful for developing therapeutic target treatments in stage-specific tumors.
Keyphrases