The Influence of Fusarium Mycotoxins on the Liver of Gilts and Their Suckling Piglets.
Tamara DolenšekTanja SvaraTanja KnificMitja GombačBoštjan LuzarBreda Jakovac-StrajnPublished in: Animals : an open access journal from MDPI (2021)
Mycotoxins are common fungal secondary metabolites in both animal feed and human food, representing widespread toxic contaminants that cause various adverse effects. Co-contamination with different mycotoxins is frequent; therefore, this study focused on feed contaminated with Fusarium mycotoxins, namely, deoxynivalenol (5.08 mg/kg), zearalenone (0.09 mg/kg), and fusaric acid (21.6 mg/kg). Their effects on the liver of gilts and their piglets were chosen as the research subject as pigs are one of the most sensitive animal species that are also physiologically very similar to humans. The gilts were fed the experimental diet for 54 ± 1 day, starting late in their pregnancy and continuing until roughly a week after weaning of their piglets. Livers of gilts and their piglets were assessed for different histopathological changes, apoptosis, and proliferation activity of hepatocytes. On histopathology, gilts fed the experimental diet had a statistically significant increase in hepatocellular necrosis and apoptosis (p = 0.0318) as well as sinusoidal leukocytosis with inflammatory infiltrates of hepatic lobules (p = 0.0004). The amount of interlobular connective tissue in the liver of experimental gilts was also significantly decreased (p = 0.0232), implying a disruption in the formation of fibrous connective tissue. Apoptosis of hepatocytes and of cells in hepatic sinusoids, further assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, showed a statistically significant increase (p = 0.0224 and p = 0.0007, respectively). No differences were observed in piglet livers. These results indicated that Fusarium mycotoxins elicited increased apoptosis, necrosis, and inflammation in the liver of gilts, but caused no effects on the liver of piglets at these concentrations.
Keyphrases
- cell cycle arrest
- oxidative stress
- endoplasmic reticulum stress
- cell death
- induced apoptosis
- pi k akt
- physical activity
- drinking water
- risk assessment
- signaling pathway
- randomized controlled trial
- high throughput
- intensive care unit
- ms ms
- human health
- health risk
- pregnant women
- mechanical ventilation
- pregnancy outcomes