Login / Signup

A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures.

Davyd R BohdanValeria V VoroninaJanusz M BujnickiEugene F Baulin
Published in: Nucleic acids research (2023)
Understanding the 3D structure of RNA is key to understanding RNA function. RNA 3D structure is modular and can be seen as a composition of building blocks of various sizes called tertiary motifs. Currently, long-range motifs formed between distant loops and helical regions are largely less studied than the local motifs determined by the RNA secondary structure. We surveyed long-range tertiary interactions and motifs in a non-redundant set of non-coding RNA 3D structures. A new dataset of annotated LOng-RAnge RNA 3D modules (LORA) was built using an approach that does not rely on the automatic annotations of non-canonical interactions. An original algorithm, ARTEM, was developed for annotation-, sequence- and topology-independent superposition of two arbitrary RNA 3D modules. The proposed methods allowed us to identify and describe the most common long-range RNA tertiary motifs. Along with the prevalent canonical A-minor interactions, a large number of previously undescribed staple interactions were observed. The most frequent long-range motifs were found to belong to three main motif families: planar staples, tilted staples, and helical packing motifs.
Keyphrases
  • nucleic acid
  • deep learning
  • high resolution
  • lymph node
  • mass spectrometry
  • cross sectional