Login / Signup

Cell ratcheting through the Sbf RabGEF directs force balancing and stepped apical constriction.

Hui MiaoTimothy E VanderleestCayla E JewettDinah LoerkeJ Todd Blankenship
Published in: The Journal of cell biology (2019)
During Drosophila melanogaster gastrulation, the invagination of the prospective mesoderm is driven by the pulsed constriction of apical surfaces. Here, we address the mechanisms by which the irreversibility of pulsed events is achieved while also permitting uniform epithelial behaviors to emerge. We use MSD-based analyses to identify contractile steps and find that when a trafficking pathway initiated by Sbf is disrupted, contractile steps become reversible. Sbf localizes to tubular, apical surfaces and associates with Rab35, where it promotes Rab GTP exchange. Interestingly, when Sbf/Rab35 function is compromised, the apical plasma membrane becomes deeply convoluted, and nonuniform cell behaviors begin to emerge. Consistent with this, Sbf/Rab35 appears to prefigure and organize the apical surface for efficient Myosin function. Finally, we show that Sbf/Rab35/CME directs the plasma membrane to Rab11 endosomes through a dynamic interaction with Rab5 endosomes. These results suggest that periodic ratcheting events shift excess membrane from cell apices into endosomal pathways to permit reshaping of actomyosin networks and the apical surface.
Keyphrases
  • single cell
  • cell therapy
  • drosophila melanogaster
  • skeletal muscle
  • neuropathic pain
  • stem cells
  • randomized controlled trial
  • mesenchymal stem cells
  • clinical trial
  • spinal cord injury
  • smooth muscle
  • high glucose