Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry.
Samantha Perez-MillerMarcel PatekAubin MoutalPaz DuranCarly R CabelCurtis A ThorneSamuel K CamposRajesh KhannaPublished in: ACS chemical neuroscience (2021)
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Keyphrases
- sars cov
- vascular endothelial growth factor
- respiratory syndrome coronavirus
- neuropathic pain
- small molecule
- endothelial cells
- coronavirus disease
- spinal cord injury
- protein protein
- spinal cord
- papillary thyroid
- signaling pathway
- binding protein
- drug discovery
- squamous cell
- amino acid
- cancer therapy
- high throughput
- epithelial mesenchymal transition
- squamous cell carcinoma
- lymph node metastasis
- oxidative stress
- dna binding
- transcription factor
- climate change
- emergency department
- combination therapy
- pain management
- cell death
- single cell
- quality improvement
- human health
- disease virus
- cell cycle arrest