Login / Signup

Protein degraders - from thalidomide to new PROTACs.

Takumi Ito
Published in: Journal of biochemistry (2024)
Recently, the development of protein degraders (protein-degrading compounds) has prominently progressed. There are two remarkable classes of protein degraders: proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs). Almost 70 years have passed since thalidomide was initially developed as a sedative-hypnotic drug, which is currently recognized as one of the most well-known MGDs. During the last two decades, a myriad of PROTACs and MGDs have been developed, and the molecular mechanism of action (MOA) of thalidomide was basically elucidated, including identifying its molecular target cereblon (CRBN). CRBN forms a Cullin Ring Ligase 4 with Cul4 and DDB1, whose substrate specificity is controlled by its binding ligands. Thalidomide, lenalidomide and pomalidomide, three CRBN-binding MGDs, were clinically approved to treat several intractable diseases (including multiple myeloma). Several other MGDs and CRBN-based PROTACs (ARV-110 and AVR-471) are undergoing clinical trials. In addition, several new related technologies regarding PROTACs and MGDs have also been developed, and achievements of protein degraders impact not only therapeutic fields but also basic biological science. In this article, I introduce the history of protein degraders, from the development of thalidomide to the latest PROTACs and related technologies.
Keyphrases
  • multiple myeloma
  • clinical trial
  • binding protein
  • protein protein
  • amino acid
  • randomized controlled trial
  • public health
  • drug delivery
  • emergency department