With respect to spatial overlap, CNN-based segmentation of short axis cardiovascular magnetic resonance (CMR) images has achieved a level of performance consistent with inter observer variation. However, conventional training procedures frequently depend on pixel-wise loss functions, limiting optimisation with respect to extended or global features. As a result, inferred segmentations can lack spatial coherence, including spurious connected components or holes. Such results are implausible, violating the anticipated topology of image segments, which is frequently known a priori. Addressing this challenge, published work has employed persistent homology, constructing topological loss functions for the evaluation of image segments against an explicit prior. Building a richer description of segmentation topology by considering all possible labels and label pairs, we extend these losses to the task of multi-class segmentation. These topological priors allow us to resolve all topological errors in a subset of 150 examples from the ACDC short axis CMR training data set, without sacrificing overlap performance.
Keyphrases
- convolutional neural network
- deep learning
- magnetic resonance
- artificial intelligence
- contrast enhanced
- magnetic resonance imaging
- machine learning
- big data
- emergency department
- left ventricular
- systematic review
- randomized controlled trial
- patient safety
- heart failure
- atrial fibrillation
- diffusion weighted imaging
- meta analyses