Inclusion of Oat and Yeast Culture in Sow Gestational and Lactational Diets Alters Immune and Antimicrobial Associated Proteins in Milk.
Barry DonovanAridany Suarez-TrujilloTheresa M CaseyUma K AryalDawn ConklinLeonard L WilliamsRadiah C MinorPublished in: Animals : an open access journal from MDPI (2021)
Maternal diet supplementation with pro- and prebiotics is associated with decreased incidence of diarrhea and greater piglet performance. This study investigated the impact adding whole ground oat as a prebiotic, alone or in combination with a probiotic, yeast culture (YC) (Saccharomyces cerevisiae), to sow gestation and lactation rations had on milk protein composition, piglet growth, and incidence of post-weaning diarrhea (PWD). Diets: control (CON), CON + yeast culture (YC) [5 g/kg], CON + oat (15% inclusion rate) (Oat) or CON+ YC [5 g/kg] + Oat (15%) were fed the last 30 days of gestation and throughout lactation (18-21 days). Shotgun proteome analysis of day 4 and 7 postpartum milk found 36 differentially abundant proteins (P-adj < 0.1) in both Oat and YC supplemented sows relative to CON. Notable was the increased expression of antimicrobial proteins, lactoferrin and chitinase in milk of Oat and YC sows compared to CON. The levels of IgA, IgM (within colostrum and milk) and IgG (within milk) were similar across treatments. However, colostral IgG levels in Oat-supplemented sows were significantly lower (p < 0.05) than that of the control sows, IgG from Oat-supplemented sows displayed greater reactivity to E. coli-antigens compared with CON and YC. Piglets from sows that consumed Oat alone or in combination weighed significantly more (p < 0.05) at birth compared to CON and YC. However, piglets in the Oat + YC group weighed less at weaning and had the lowest weight gain (p < 0.05) postweaning, compared with CON. Taken together with the observation that piglets of either YC- or Oat-fed sows had less PWD compared to CON and YC+ Oat suggests that Oat or YC supplementation positively impacts piglets through expression of certain milk-associated immune and antimicrobial proteins.
Keyphrases
- weight gain
- saccharomyces cerevisiae
- staphylococcus aureus
- weight loss
- poor prognosis
- risk factors
- escherichia coli
- birth weight
- long non coding rna
- immune response
- mechanical ventilation
- gestational age
- mass spectrometry
- high resolution
- clostridium difficile
- anti inflammatory
- extracorporeal membrane oxygenation
- pregnancy outcomes