Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases.
Nguyen Hoai NguyenGia-Buu TranCuong Thach NguyenPublished in: Journal of molecular medicine (Berlin, Germany) (2019)
Free radicals and other oxidants are critical determinants of the cellular signaling pathways involved in the pathogenesis of several human diseases including inflammatory diseases. Numerous studies have demonstrated the protective effects of antioxidant enzymes during inflammation by elimination of free radicals. The superoxide dismutase (SOD), an antioxidant enzyme, plays an essential pathogenic role in the inflammatory diseases by not only catalyzing the conversion of the superoxide to hydrogen peroxide and oxygen but also affecting immune responses. There are three distinct isoforms of SOD, which distribute in different cellular compartments such as cytosolic SOD1, mitochondrial SOD2, and extracellular SOD3. Many studies have investigated the anti-oxidative effects of SOD3 in the inflammatory diseases. Herein, in this review, we focus on the current understanding of SOD3 as a therapeutic protein in inflammatory diseases such as skin, autoimmune, lung, and cardiovascular inflammatory diseases. Moreover, the mechanism(s) by which SOD3 modulates immune responses and signal initiation in the pathogenesis of the diseases will be further discussed.