Pre-stimulus gamma power in human posteromedial cortex shows supra-modal mechanisms in predicting the amplitude and latency of task-induced suppression.
Jie MaLu ShenLi SongQiang GuoJosef ParviziBiao HanQi ChenPublished in: Cerebral cortex (New York, N.Y. : 1991) (2023)
Upon repetitively performing the same well-practiced task on identical bottom-up stimuli, our performance still varies. Although it has been well documented that elevated pre-stimulus baseline activity in the human default-mode network impairs the subsequent task performance, it remains unknown (i) the fine-grained temporal dynamics and (ii) whether the underlying neural dynamics are supra-modal or modality-specific. We utilized intracranial recordings in the human posteromedial cortex (PMC) during a simple visual and an auditory detection task. Our findings suggested that the pre-stimulus gamma power in PMC predicted the subsequent task performance. Critically, the higher the pre-stimulus gamma power, the longer it took for it to be suppressed, and the less suppressed it was during the task performance, which eventually resulted in deleterious effects on task performance, i.e. longer reaction times. These fine-grained temporal dynamics were consistent between the visual and auditory simple detection task. In addition, a direct comparison between the visual and auditory modality showed that the between-modality difference emerged during the recovery period from the maximal gamma suppression back to the baseline. Taken together, the present results contribute novel spatio-temporal mechanisms in human PMC on how simple detection performance varies across multiple repetitions, irrespective of the sensory modality involved.