Login / Signup

Gingerol and/or sorafenib attenuates the DAB-induced HCC and hepatic portal vein dilatation via ATG4/CASP3 and COIIV/COX-2/NF-κB expression.

Afrah Fatthi SalamaAli H El-FarEsraa Ali AnbarSabry Ali El-NaggarRami M ElshazliAlaa Elmetwalli
Published in: Medical oncology (Northwood, London, England) (2024)
Ginger (Gin) has numerous therapeutic properties. One of Gin's most potent components is 6-gingerol, a naturally occurring phenol. This study aimed to investigate the therapeutic impact of gingerol and/or sorafenib on the ATG4/CASP3 and COIIV/COX-2/NF-B Expression as a potential therapy for DAB-induced HCC. Gin was administered to HCC mice induced by p-Dimethylaminoazobenzene (DAB) alone or combined with sorafenib (Sor). Superoxide dismutase (SOD), catalase (CAT), and oxidative stress malondialdehyde (MDA), as well as biochemical markers including AST, ALT, ALP, Albumin, and Bilirubin, were examined. The expression of oncogenes (COIIV, COX-2, NF-κB, and survivin) and tumor suppressor genes (ATG4 and CASP3) was evaluated using qPCR. According to the results, the levels of MDA have been markedly decreased, while SOD and CAT have been increased. Further, the expression levels of tumor suppressor genes were upregulated, whereas the expression levels of oncogene genes were downregulated. Furthermore, in a dose-dependent manner, gingerol has shown the potential to alleviate hepatic portal vein (PV) dilatation and could offer a reliable therapy for HCC. This suggests combining the two compounds may be more effective than alone and that Gin could be a promising therapeutic option for HCC. The binding of Gin and Sor to the active sites of the target genes prevents them from functioning normally, which in turn stops the pathways from carrying out their oncogenic functions. Additionally, COX-2 inhibition reduces the production of certain pro-inflammatory compounds, which further averts oncogenesis. Conclusively, this study indicated that Gin has cytoprotective properties and anti-cancer activity that may be related to controlling oxidative stress. This effect may be achieved by suppressing the COIIV/COX-2/NF-κB pathway and upregulating the ATG4 /CASP3 pathways.
Keyphrases