USP15, activated by TFAP4 transcriptionally, stabilizes SHC1 via deubiquitination and deteriorates renal cell carcinoma.
Yaxing ShiJing ZhangJiaxing LiJieqian HeSi WuMiao YuDa YangLincheng JuPublished in: Cancer science (2024)
Ubiquitin-specific peptidase 15 (USP15), a critical deubiquitinating enzyme, has been demonstrated to improve substrate stabilization by hydrolyzing the bond between the substrate and ubiquitin, and is implicated in multiple carcinogenic processes. Prompted by the information cited from The Cancer Genome Atlas (TCGA) database and the Cancer Proteogenomic Data Analysis Site (cProSite), USP15 is selectively overexpressed in clear cell renal cell carcinoma (ccRCC) samples. We aimed to investigate the function of USP15 on ccRCC malignant features, which was emphasized in its deubiquitination of SHC adaptor protein 1 (SHC1). The overexpression of USP15 promoted the capacity of proliferation, migration, and invasion in ccRCC CAKI1 and 769-P cells, and these malignant biological properties were diminished by USP15 deletion in 786-O cells. USP15 accelerated tumor growth and lung metastasis in vivo. In addition, deubiquitinase USP15 was further identified as a new protector for SHC1 from degradation by the ubiquitination pathway, the post-translational modification. In sequence, transcription factor activating enhancer binding protein 4 (TFAP4) was shown to be partly responsible for USP15 expression at the level of transcription, as manifested by the chromatin immunoprecipitation and pull-down assay. Based on the in vitro and in vivo data, we postulate that USP15 regulated by TFAP4 transcriptionally deteriorates ccRCC malignant biological properties via stabilizing SHC1 by deubiquitination.