Login / Signup

State observer design for delayed genetic regulatory networks.

Li-Ping TianZhi-Jun WangAmin MohammadbagheriFang-Xiang Wu
Published in: Computational and mathematical methods in medicine (2014)
Genetic regulatory networks are dynamic systems which describe the interactions among gene products (mRNAs and proteins). The internal states of a genetic regulatory network consist of the concentrations of mRNA and proteins involved in it, which are very helpful in understanding its dynamic behaviors. However, because of some limitations such as experiment techniques, not all internal states of genetic regulatory network can be effectively measured. Therefore it becomes an important issue to estimate the unmeasured states via the available measurements. In this study, we design a state observer to estimate the states of genetic regulatory networks with time delays from available measurements. Furthermore, based on linear matrix inequality (LMI) approach, a criterion is established to guarantee that the dynamic of estimation error is globally asymptotically stable. A gene repressillatory network is employed to illustrate the effectiveness of our design approach.
Keyphrases
  • genome wide
  • copy number
  • transcription factor
  • dna methylation
  • randomized controlled trial
  • systematic review
  • genome wide identification