Iron(III) Complex-Functionalized Gold Nanocomposite as a Strategic Tool for Targeted Photochemotherapy in Red Light.
Maynak PalVanitha RamuDulal MusibAmit KunwarArunima BiswasMithun RoyPublished in: Inorganic chemistry (2021)
Iron(III)-phenolate/carboxylate complexes exhibiting photoredox chemistry and photoactivated reactive oxygen species (ROS) generation at their ligand-to-metal charge-transfer (LMCT) bands have emerged as potential strategic tools for photoactivated chemotherapy. Herein, the synthesis, in-depth characterization, photochemical assays, and remarkable red light-induced photocytotoxicities in adenocarcinomic human immortalized human keratinocytes (HaCaT) and alveolar basal epithelial (A549) cells of iron(III)-phenolate/carboxylate complex of molecular formula, [Fe(L1)(L2)] (1), where L1 is bis(3,5 di-tert-butyl-2-hydroxybenzyl)glycine and L2 is 5-(1,2-dithiolan-3-yl)-N-(1,10-phenanthroline-5-yl)pentanamide, and the gold nanocomposite functionalized with complex 1 (1-AuNPs) are reported. There was a significant red shift in the UV-visible absorption band on functionalization of complex 1 to the gold nanoparticles (λmax: 573 nm, 1; λmax: 660 nm, 1-AuNPs), rendering the nanocomposite an ideal candidate for photochemotherapeutic applications. The notable findings in our present studies are (i) the remarkable cytotoxicity of the nanocomposite (1-AuNPs) to A549 (IC50: 0.006 μM) and HaCaT (IC50: 0.0075 μM) cells in red light (600-720 nm, 30 J/cm2) while almost nontoxic (IC50 > 500 μg/mL, 0.053 μM) in the dark, (ii) the nontoxicity of 1-AuNPs to normal human diploid fibroblasts (WI-38) or human peripheral lung epithelial (HPL1D) cells (IC50 > 500 μg/mL, 0.053 μM) both in the dark and red light signifying the target-specific anticancer activity of the nanocomposite, (iii) localization of 1-AuNPs in mitochondria and partly nucleus, (iv) remarkable red light-induced generation of reactive oxygen species (ROS: 1O2, •OH) in vitro, (v) disruption of the mitochondrial membrane due to enhanced oxidative stress, and (vi) caspase 3/7-dependent apoptosis. A similar cytotoxic profile of complex 1 was another key finding of our studies. Overall, our current investigations show a new red light-absorbing iron(III)-phenolate/carboxylate complex-functionalized gold nanocomposite (1-AuNPs) as the emerging next-generation iron-based photochemotherapeutic agent for targeted cancer treatment modality.
Keyphrases
- reactive oxygen species
- induced apoptosis
- cell cycle arrest
- quantum dots
- oxidative stress
- reduced graphene oxide
- cell death
- endothelial cells
- gold nanoparticles
- endoplasmic reticulum stress
- induced pluripotent stem cells
- visible light
- dna damage
- photodynamic therapy
- iron deficiency
- pluripotent stem cells
- signaling pathway
- solid phase extraction
- molecularly imprinted
- preterm infants
- mass spectrometry
- pi k akt
- cell proliferation
- climate change
- risk assessment
- locally advanced
- single molecule
- metal organic framework
- human milk
- anti inflammatory