Valorisation of Chitosan Natural Building Block as a Primary Strategy for the Development of Sustainable Fully Bio-Based Epoxy Resins.
Iolanda Fusteș-DămocRoxana DinuTeodor MăluțanBogdan C SimionescuPublished in: Polymers (2023)
The non-toxic and biodegradable nature of chitosan makes it a valuable resource offering promising opportunities in the development of bio-based materials with enhanced mechanical and thermal properties. In this work, the combination of epoxidized linseed oil, oxalic or citric acids, and chitosan (CHI) as a curing accelerator presents an attractive strategy to create bio-based and sustainable thermosetting materials. This article aims to provide a comprehensive exploration of the systems reactivities, characteristics, and performance evaluation of the designed bio-thermosets. Both the nature of the two carboxylic acids and the presence of chitosan are shown to have a big impact on the thermomechanical properties of the developed networks. While oxalic acid favours the formation of elastic networks, with low T g values (increasing with CHI content between 0.7 and 8.5 °C) and relatively low Young's modulus (~2.5 MPa), citric acid promotes the formation of very dense networks with lower mass of the segments between the crosslinks, having 20 times higher T g values (from 36 to 45 °C) and ~161 times higher Young's modulus (from 94 MPa up to 404 MPa in these systems). The CHI has a strong impact on the curing reaction and on the overall properties, by increasing the materials' performance.