Anti-Obesity Effect of DKB-117 through the Inhibition of Pancreatic Lipase and α-Amylase Activity.
Do Hoon KimYu Hwa ParkJung Suk LeeHyun Il JeongKye Wan LeeTong Ho KangPublished in: Nutrients (2020)
This study sought to evaluate the effects of Phaseolus multiflorus var. albus Bailey extract (PM extract) and Pleurotus eryngii var. ferulae extract (PF extract) on the inhibition of digestive enzymes and to confirm the anti-obesity effect of DKB-117 (a mixture of PM extract and PF extract) in digestive enzyme inhibition in a mouse model of obesity induced by a high-fat diet. In in vitro studies, PM extract and PF extract have increased dose-dependent inhibitory activity on α-amylase (Inhibitory concentration (IC50 value: 6.13 mg/mL)) and pancreatic lipase (IC50 value; 1.68 mg/mL), respectively. High-fat diet-induced obese mice were orally administered DKB-117 extracts at concentrations of 100, 200, and 300 mg/kg/day, while a positive control group was given orlistat (pancreatic lipase inhibitor) and Garcinia cambogia (inhibiting the enzymes needed to synthesize carbohydrates into fat) at concentrations of 40 and 200 mg/kg/day, respectively, for eight weeks. As a result, body weight, fat mass (total fat mass, abdominal fat, and subcutaneous fat) detected with microcomputed tomography, fat mass (abdominal fat and inguinal fat) after an autopsy, and liver triglyceride levels were decreased significantly in the DKB-117 (300 mg/kg/day) group compared to those in the HFD control group. Additionally, we obtained results indicating that the presence of carbohydrates was found more in the DKB-117-300 (300 mg/kg/day) group than in the HFD control group. These data clearly show that DKB-117 extracts are expected to have an anti-obesity effect through a complex mechanism that promotes carbohydrate release through the inhibition of carbohydrate-degrading enzymes while blocking lipid absorption through lipase inhibition.
Keyphrases
- adipose tissue
- insulin resistance
- high fat diet
- high fat diet induced
- oxidative stress
- metabolic syndrome
- fatty acid
- type diabetes
- weight loss
- anti inflammatory
- mouse model
- particulate matter
- body weight
- skeletal muscle
- heavy metals
- air pollution
- prostate cancer
- machine learning
- signaling pathway
- deep learning
- body mass index
- case control