Login / Signup

Early Evidence for Northern Salmonid Fisheries Discovered using Novel Mineral Proxies.

D H ButlerSatu KoivistoV BrumfeldR Shahack-Gross
Published in: Scientific reports (2019)
Salmonid resources currently foster socioeconomic prosperity in several nations, yet their importance to many ancient circumpolar societies is poorly understood due to insufficient fish bone preservation at archaeological sites. As a result, there are serious gaps in our knowledge concerning the antiquity of northern salmonid fisheries and their impacts on shaping biodiversity, hunter-gatherer adaptations, and human-ecological networks. The interdisciplinary study presented here demonstrates that calcium-magnesium phosphate minerals formed in burned salmonid bones can preserve at ancient northern sites, thus informing on the early utilization of these resources despite the absence of morphologically classifiable bones. The minerals whitlockite and beta magnesium tricalcium phosphate were identified in rare morphologically classifiable Atlantic salmonid bones from three Mid-Holocene sites in Finland. Large amounts of beta magnesium tricalcium phosphate were also experimentally formed by burning modern Atlantic salmonid and brown trout bones. Our results demonstrate the value of these minerals as proxies for ancient northern salmonid fishing. Specifically, the whitlockite mineral was discovered in hearth sediments from the 5,600 year old Yli-Ii Kierikinkangas site on the Iijoki River in northern Finland. Our fine sieving and mineralogical analyses of these sediments, along with zooarchaeological identification of recovered bone fragments, have confirmed for the first time that the people living at this village did incorporate salmonids into their economies, thus providing new evidence for early estuary/riverine fisheries in northern Finland.
Keyphrases
  • heavy metals
  • endothelial cells
  • risk assessment
  • climate change
  • postmenopausal women
  • polycyclic aromatic hydrocarbons
  • soft tissue
  • human health
  • pluripotent stem cells