Acylation of agricultural protein biomass yields biodegradable superabsorbent plastics.
Antonio J CapezzaFaraz MuneerThomas PradeWilliam R NewsonOisik DasMalin LundmanRichard T OlssonMikael S HedenqvistEva JohanssonPublished in: Communications chemistry (2021)
Superabsorbent polymers (SAP) are a central component of hygiene and medical products requiring high liquid swelling, but these SAP are commonly derived from petroleum resources. Here, we show that sustainable and biodegradable SAP can be produced by acylation of the agricultural potato protein side-stream (PPC) with a non-toxic dianhydride (EDTAD). Treatment of the PPC yields a material with a water swelling capacity of ca. 2400%, which is ten times greater than the untreated PPC. Acylation was also performed on waste potato fruit juice (PFJ), i.e. before the industrial treatment to precipitate the PPC. The use of PFJ for the acylation implies a saving of 320 000 tons as CO 2 in greenhouse gas emissions per year by avoiding the industrial drying of the PFJ to obtain the PPC. The acylated PPC shows biodegradation and resistance to mould growth. The possibilities to produce a biodegradable SAP from the PPC allows for future fabrication of environment-friendly and disposable daily-care products, e.g. diapers and sanitary pads.