To solve the poor sustainability of electroactive stimulation in clinical therapy, a strategy of combining a piezoelectric BaTiO3-coated Ti6Al4V scaffold and low-intensity pulsed ultrasound (LIPUS) was unveiled and named here as piezodynamic therapy. Thus, cell behavior could be regulated phenomenally by force and electricity simultaneously. First, BaTiO3 was deposited uniformly on the surface of the three-dimensional (3D) printed porous Ti6Al4V scaffold, which endowed the scaffold with excellent force-electricity responsiveness under pulsed ultrasound exposure. The results of live/dead staining, cell scanning electron microscopy, and F-actin staining showed that cells had better viability, better pseudo-foot adhesion, and more muscular actin bundles when they underwent the piezodynamic effect of ultrasound and piezoelectric coating. This piezodynamic therapy activated more mitochondria at the initial stage that intervened in the cell cycle by promoting cells' proliferation and weakened the apoptotic damage. The quantitative real-time polymerase chain reaction data further confirmed that the costimulation of the ultrasound and the piezoelectric scaffolds could trigger adequate current to upregulated the expression of osteogenic-related genes. The continuous electric cues could be generated by the BaTiO3-coated scaffold and intermittent LIPUS stimulation; thereon, more efficient bone healing would be promoted by piezodynamic therapy in future treatment.
Keyphrases
- magnetic resonance imaging
- cell cycle
- tissue engineering
- induced apoptosis
- cell therapy
- cell death
- electron microscopy
- cell cycle arrest
- cell proliferation
- stem cells
- poor prognosis
- mesenchymal stem cells
- bone marrow
- oxidative stress
- electronic health record
- high resolution
- machine learning
- resistance training
- staphylococcus aureus
- mass spectrometry
- body composition
- transcription factor
- computed tomography
- single molecule
- flow cytometry
- bone mineral density
- deep learning
- binding protein
- biofilm formation